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decide to turn on sensors that are currently in sleeping mode or
to send a request to the transport operator to place additional
sensors in the cargo hold.

The temperature of items not presently equipped with an own
sensor can be estimated by spatial interpolation. The Kriging
method was applied to a set of 40 sensors that were installed
inside one compartment of a loaded delivery truck [30]. The es-
timated Variogram shows that a temperature deviation has an in-
fluence on its neighborhood with a radius of 2.8 meter. The type
and the radius of the Variogram changes only very little between
different tours of the same vehicle. For subsequent transports
with a similar loading scheme the application of the Kriging
method can be simplified. The weighting factors can be applied
to the new measurements without modification because they de-
pend only on the Variogram.

In order to evaluate whether the sensor density is sufficient to
provide an accurate interpolation, the system can compare the
actual measurement of one sensor with the interpolated predic-
tion for its position. A high value for this residual indicates that
the number of active sensors has to be increased. If for example
the number of sensors is reduced to 20, the average residual rises
to 1.1 C.

However, Kriging provides a more advanced way to estimate
the interpolation error. The so-called Kriging-Variance gives a
prediction for the expected interpolation error for any point in
space inside the container. The sensor system can scan for points
with high Kriging-Variance and decide whether the tolerance is
acceptable.

A sensor could give a wrong measurement caused by low
battery voltage or sensor damage due to the tough conditions
of food transports with mechanical stress and air humidity of
almost 100%. The above described residual between measure-
ment and interpolation can also be applied to detect faulty sen-
sors by plausibility checking. A high residual value could mean
one of the following: a) the spatial sensor density is too low;
b) the sensor is faulty or has a high tolerance; or c) there is
a local physical cause for the deviation, e.g., a “warm” pallet
was loaded into the container or an unwanted ripening process
started inside a fruit pallet and creates a large amount of heat by
conversion of starch to sugar.

The probability for case a) is low if the residual is much higher
than the expected deviation according to the Kriging-Variance.
Further classification and comparison with typical fault situa-
tions from previous transports is necessary in order to discern
between cases b) and c).

Alternatively, the plausibility of the records could be evalu-
ated by knowledge-based algorithms, as shown in Fig. 4, to eval-
uate the sensor records inside a container including two main
zones (A and B) [35].

The plausibility-checking algorithm could be applied either
locally to evaluate neighboring sensor nodes in each cluster, or
globally to process the neighboring clusters to detect any abnor-
mality in the sensor network. The required intelligence of each
sensor node to evaluate the collected records varies depending
on the desired data processing level.

The local plausibility-checking was implemented by a two-
stage artificial neural network (ANN) algorithm. The first ANN
implements the approximation mechanism, the second a clas-
sification algorithm [31] as shown in Fig. 5. At first, a multi-

Fig. 4. Knowledge-based plausibility checking in the intelligent container.

Fig. 5. Data approximation and classification in a wireless sensor network
using ANN.

layer-perceptron neural network calculates a prediction based
on the current measurement of the three closest neighbors; a
dynamic sliding back-propagation is used to train the approxi-
mation network, which depends highly upon the last few records
of the sensor nodes. Due to nonlinear mapping features, the pro-
posed network led to more accurate results compared to the clas-
sical data approximation approaches like least squares [31]. The
approximation residual is given by the difference between ANN
prediction and the actual measurement.

To design the approximation network, two hidden layers are
taken into consideration, while an output layer merely sums the
weighted data. Various network architectures and parameters
were tested to optimize the network to approximate the records.
The number of first hidden layer units varied between 2 and 9;
and the number of second hidden layer units varied between 2
and 5. The results showed that in the majority of cases, it is
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Fig. 6. Loss per day of shelf life for typical food products.

preferable to use four neurons in both hidden layers to approx-
imate the data of each sensor using three neighboring sensors
[31]. However, by using fewer neurons, the mapping is less pre-
cise, and using more neurons is unfeasible due to increased sat-
uration in data mapping, calculation time, and power demands.
Furthermore, using two hidden layers increases the nonlinear
mapping feature between input pattern and target [31].

The second neural network uses a radial basis function struc-
ture to classify the approximation residual (as plausible or im-
plausible) considering the correlation factors between sensor
nodes. The probabilistic neural network estimates the “proba-
bility density function” for each class based on the given training
samples.

For example, a simultaneous rise of relative humidity and
temperature indicates that warm air with high absolute humidity
penetrates through an open door, whereas falling relative hu-
midity indicates a local warming without air exchange. A cogni-
tive sensor system should also adapt its measurement intervals,
if necessary. An intelligent sensor predicts the slew rate for the
change of an environmental parameter by an ANN with the four
last recent samples as input parameters [32]. The interval to the
next measurement is set in a way that the expected change of the
parameter during the interval is lower than a tolerance threshold.

D. Evaluation of Sensor Data

Apart from adjusting the focus, the main task of the deci-
sion support tool is to evaluate the effects of environmental pa-
rameter deviations on the product quality. The shelf life algo-
rithm from Tijskens [18] was taken as an example. The algo-
rithm was transferred into a form, which allows updating the
shelf life value on-the-�y with only few mathematical opera-
tions after each temperature measurement. The loss of shelf life
per day is calculated as a function of temperature. Fig. 6 shows
the loss-per-day curve for some typical fruits and vegetables.
The current loss per day is subtracted from the initial shelf life.

This algorithm can run as a software bundle or an agent as part
of the DST on the gateway unit inside the container or directly
on individual sensor nodes. The typical hardware of wireless

Fig. 7. Transfer of the mobile DST.

sensor nodes provides only little processing power. Mathemat-
ical calculations are restricted to integer operations. Therefore,
further optimization of the shelf life algorithm had to be car-
ried out [2]. The algorithm has already been implemented on a
commercial sensor node from Ambient Systems [33]. The DST
decides on the bases of prediction for the remaining shelf life,
whether the goods are in proper condition or the logistic plan-
ning has to be adjusted in order to prevent losses by decay.

E. Implementation of the Decision Support Tool

Simple functions of the DST can be implemented at the
sensor level, but more complex decisions have to be performed
on the gateway level. A part of the DST is permanently imple-
mented, but special functions can be installed upon request as in
the following examples. a) The system detects one faulty sensor
and requests for a Kriging tool to interpolate temperature and
humidity at the missing position. b) The RFID reader informs
the system that a new kind of good was loaded. The systems
download a speci�c shelf life model.

The latter example leads to the idea of a mobile DST, which
accompanies a freight item along its course through the logistic
chain. The DST contains speci�c instructions, how temperature
and quality deviations should be handled. Furthermore, it con-
tains the temperature history and transport information as part
of an electronic way-bill. Fig. 7 illustrates process of transfer-
ring the mobile DST. New freight items are detected by an RFID
reader. The truck or container sends a request for the DST that
represents the loaded freight item. The request is answered by
the last processing platform, which executed the DST software,
and transfers it to the new means of transportation.

So far, the above described cognitive features are imple-
mented and tested in separate software frameworks, but our
aim is to provide them on a fully integrated OSGi platform.

F. Experimental Results

The remote supervision of spatial temperature deviations and
the newly developed BananaHop protocol for communication
inside the sensor network were tested during the transport of
two containers, loaded with Bananas, from Costa Rica to Ger-
many [34]. This experiment provides another proof for the ex-
istence of spatial temperature in almost all transport situations.
Especially the duration of the “cooling-down process” varied
tremendously for different positions inside one container and



694 IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011

Fig. 8. Comparison of core temperatures for different positions and containers.

also between the two supervised containers. Fig. 8 shows the
decline of the core temperature over time for pallets close to
the door and those at the opposite end of the container. Pal-
lets, which stood close to the refrigeration unit, required 58%
less time for cooling-down than those at the door end. The av-
erage temperature differences over the length of the container
were 1.85 C and 2.03 C, respectively. The maximum tem-
perature difference of 4.98 C was observed in the second con-
tainer, 2.1 days after leaving Costa Rica. Although both con-
tainers were of the same type and used identical refrigeration
units, the cooling-down was 38 % faster in container 2.

The experiment also showed that concise temperature su-
pervision is impossible without additional sensors inside the
freight. The built-in sensors of a standard refrigeration unit
measure only the supply and the return air temperature, but
not the freight temperature. The supply air temperature stayed
almost constant at 13.75 C. The state of the cooling process
can be verified by the difference between the return and the
supply air temperatures, but it is impossible to conclude the
pallet core temperature if the only available measurements are
the latter two.

During the two weeks of transport the battery voltage of the
sensor nodes dropped from 3 to 2.77 Volts, which is still above
the minimal required supply voltage of 2.4 Volt. The power
consumption mainly depends on the interval between radio
transmissions. If the interval is extended from the current 2 to
15 min, the sensors could operate for several months without
maintenance.

In order to evaluate the signal attenuation inside the con-
tainer due to water-containing food products, a supplementary
feature was added to the sensor node software. For each sam-
pling interval, the nodes kept a record of all neighbors from
whom a transmission was received. After the end of transport,
the records were combined for an analysis of possible routes
within the network. Fig. 9 indicates the existing links between
pairs of sensors and their packet rate (lines between boxes), as
well as the percentage of messages that were actually deliv-
ered by the BananaHop protocol [34] to the gateway from each

Fig. 9. Protocol performance and links between sensors.

sensor (numbers inside boxes). Although the vertical distance
between sensors inside one pallet was only 0.5 meters, two sen-
sors were completely disconnected from the network due to the
high signal attenuation. The maximum transmission power of
the TelosB platform is only 1 mW. Future experiments should
make use of a platform with higher radio power, such as the
ZigBitAmp from Meshnetics.

In total 76% of all the sent messages arrived at the gateway.
Part of the losses was due to inappropriate routing. However, an
analysis of the combined link data showed that the route to the
gateway was physically interrupted for certain number of inter-
vals and no alternate route existed. The probability for the latter
case was calculated to 20%. This implies that the BananaHop
protocol lost 4% of all messages during this experiment due to
inappropriate routing.

The BananaHop protocol uses a simplified method to esti-
mate the quality of links to the neighbor sensor nodes. The link
quality is calculated as a function of the signal strength (RSSI)
of the last received beacon. Routing losses are mainly caused by
wrong link estimation. One option to improve the link estima-
tion would be to send additional ping-messages to the neighbors.
But, by adding cognitive features to the routing mechanism, the
performance could be improved without increasing the number
of control messages and thereby reducing the energy consump-
tion. Such a cognitive sensor node could detect inappropriate
routing by the fact that it does not receive acknowledgement
messages for its transmitted sensor data. The sensor can then try
to adjust its model for estimation of the neighbor link quality,
e.g., by modifying the thresholds to discern between “good” and
“weak” links.

The performance of the ANN-plausibility check was tested
with the data of an experiment inside a refrigerated truck at the
premises of the University of Bremen. Two faults were simu-
lated including: a) battery failure of a sensor by removing its
power supply and b) a temperature disturbance by opening the
door. Fig. 10 shows the experimental results of a two phase test
inside a real truck [35]. First phase models the internal faults
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Fig. 10. Approximation residuals during the test. (a) First phase. (b) Second
phase [35].

Fig. 11. A classical sensor system.

such as battery discharge and disconnection of the communica-
tion link. They occur at 55th, 70th, and 85th min within 10 min
for the first, second, and third sensor nodes, respectively.

The second phase begins at 120th min and lasts until 240th
min. The doors of the truck are opened once at the 120th min
for 2 min. Thereafter, the doors remain closed until the 178th
min, after which they are reopened for 4 min until 182nd min
and then reclosed [35]. As shown in Fig. 10, the approximation
of faulty sensor nodes shows large deviations from the actual
values, which could be detected by classification mechanism.

The next section discusses these cognitive features from a
more general perspective.

III. COGNITIVE FEATURES IN THE SENSOR NETWORK

A classical sensor system works, as shown in Fig. 11. There is
a direct path from the physical phenomenon such as temperature
to the electrical sensor output. The characteristics of the sensor
should be strongly deterministic.

An advanced sensor system is shown in Fig. 12. There is a
second layer of data evaluation, and there are circular processes
or feedback loops between the layers.

Fig. 12. The new approach to a sensor system applying cognitive features.

One feedback loop may be used for efferent control, when
the sensitivity of the sensor element is changed according to
the signal strength. Efferent control is known from biology: the
human eye adapts to light, the ear adapts to noise. It is possible
to reduce the voltage of a capacitive microphone when the sound
levels are too high. This reduces the sensitivity, but it does not
prevent mechanical stress on the microphone membrane. In bi-
ological systems, the change of sensitivity is done on the hard-
ware side. If light is too strong, the iris of the eye closes. The
sensitivity is reduced and the retina is protected simultaneously.
This type of control acting on the physical part of the transduc-
tion mechanism is very rarely used for technical sensor systems
so far.

The most important new feature is the new level for higher
functions of data evaluation. The data are synthesized to gen-
erate a view of the status (“theses apples will be ripe in two days,
temperature and humidity are in range”). Specific knowledge
(specific shelf life models for each kin of fruit) and historic in-
formation (quality of the fruit at the time of loading) are consid-
ered. If the sensor network does not have this specific informa-
tion available, it may retrieve it from an external source. Based
on this, the system can make decisions. Estimating a remaining
shelf life is a decision, also approving a situation as OK versus
triggering an alarm. Plausibility checking is used for self-eval-
uation. Can I believe the sensor elements? Do I have enough
sensors and the sensors appropriate to control the situation?

Under certain circumstances, the system has to change the
mission of the sensor network. If a dangerous situation is de-
tected, e.g., gas sensors report that they detect traces of gases
emitted by mildew, then more information about the humidity
situation is needed. A reconfiguration has to be performed. Par-
ticular sorts of reconfiguration are being investigated or imple-
mented for the intelligent container:

— When measured values change faster than expected, the
measurement interval can be dynamically adapted [32].

— Sensors in energy saving sleeping mode can be aroused.
— Sensors identified as possibly unreliable may be replaced.
— During loading, the system can ask for more or other sen-

sors to be supplied before the transport is started. This way,
it dynamically adapts to the goods and the situation.

— Hazards for safety and security may cause the exclusion of
compromised motes.



696 IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011

These features are similar to the active perception in biolog-
ical systems as described by Schill [36]. Active perception en-
ables biological systems to exploit their limited resources of
recognition capabilities in an efficient way in order to make con-
clusions about a current state.

The circular sensing model illustrated in Fig. 12 shows a
number of analogies to the above-described properties of ac-
tive multimodal recognition in humans. As in human cogni-
tion the recognition of the current state of the intelligent con-
tainer is determined not only by bottom-up sensor information,
but also by top-down knowledge and task-related information.
Top-down information is used in the form of the interpretation of
the system status together with the history, conclusions drawn,
and decisions made. This top down information together with
the bottom-up sensor data determines the evaluation of the cur-
rent state. Moreover the sensor network used is not static, but
can be reconfigured based on the current state. Similar to mul-
timodal biological systems that direct the limited recognition
capabilities towards informative features and use the combina-
tion of information from different modalities, an advanced in-
telligent container might react on a trace of gas which could
be the metabolite product of a fungus or mildew by waking up
some humidity detectors presently down in sleep mode for en-
ergy saving.

The project of the intelligent container is part of a larger ini-
tiative at the University of Bremen that is concerned with au-
tonomous processes in logistics [36]. A logistic item such as a
parcel shall have the information and the decision power to orga-
nize itself and to choose its own way through transport or produc-
tion processes [37]. Autonomy in logistics is expected to improve
performance and robustness for very large tasks which cannot
be controlled by a central unit due to their complexity. Three
important criteria for autonomy in logistics are given in [38]:

1) Decentralized decision making in heterarchical structures.
2) Interaction of the elements.
3) Nondeterministic behavior and positive emergence.
In the case of the sensor network, these criteria are closely

linked with cognitive structures. The internal processes for cal-
culating representations and for self-evaluation not only render
the system nondeterministic, they also are the basis for decen-
tralized decision making. The application of cognitive structures
to the sensor network is thus a necessary prerequisite for it to act
as an enabler for autonomously operating logistic processes.

IV. SUMMARY AND OUTLOOK

The intelligent container is a complex sensor network appli-
cable in logistics, especially, if perishable goods such as fruits
are transported. To begin with, the sensor network measures
the important transport parameters such as temperature and hu-
midity with a special resolution superior to the one implemented
today. Next, it documents transport parameters such as acceler-
ation. Then, it looks at the status of the goods. For fruits this is
done by measuring the amount of ethylene gas emitted, which
gives information on the status of the ripeness.

These measurements are the input for data evaluation on
a higher level. The status of the fruits is estimated with fruit
ripening models. They use the temperature history measured
by the container, and also the data about the history before

the fruits have been loaded, which is stored in an electronic
way-bill. Based on these data, the remaining shelf life time is
estimated and continuously updated. A second class of high
level processes concerns the self evaluation of the system.
Using plausibility checking, faults in measurements are found
and corrected. This way the sensor network may change its
configuration autonomously during the operation.

Due to the observance of the history of the goods, the high de-
gree of nonlinearity of the ripening models, the complexity of
the decision support tools, and possible reconfiguration there is
no way to predict the decisions the container will come to during
transport. This aspect of indeterminism is known to logistic sci-
ence, and it is considered to be one of the main features of au-
tonomous or self-monitoring systems. It is also well known in
cognition science. Cognitive systems perform large amounts of
data processing and transfer within the system (Fig. 1). External
information influences the system, but does not determine it.
This model is proposed as a new approach for the understanding
of complex sensor systems (Fig. 12).

Why do we apply this much of local evaluation and com-
plexity? First, in this specific application, autonomy is a must. In
general, a container in the sea cannot be controlled from a cen-
tral station since communication cannot be guaranteed. Second,
even if there is a communication path, bandwidth is too small to
send all the data, making local data reduction and on-site eval-
uation unavoidable.

For an outlook, where does this research aim at? The intelli-
gent container will be an enabling tool for the new logistic par-
adigm of FEFO. Taking into account the remaining shelf life,
we expect better quality of the goods for the customer, less loss
during transport, and thus a reduced CO footprint.

At the moment, the system has been developed and tests
are being performed. The Intelligent Container Project is now
leaving the research phase and moving in to transfer and appli-
cation. Results of the first field test performed with fruits on a
ship en route from Middle America to Europe will be reported
soon.
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